If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2-88n+128=0
a = 15; b = -88; c = +128;
Δ = b2-4ac
Δ = -882-4·15·128
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-88)-8}{2*15}=\frac{80}{30} =2+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-88)+8}{2*15}=\frac{96}{30} =3+1/5 $
| -6(7v-5)-3=3(v-6( | | -(1v-1)=-6v+16 | | 3y+0=12 | | 3x+14=-51-10 | | x-8+13x=4 | | 3b(-4)=-3 | | 3+8x+2x=4x+6 | | .2x+3=x-7 | | 6x-9=-46-5x | | 7(1n+4)=88-5n | | 7(n+4)=88-2n | | 6-10x=33+x | | 9+x=300 | | 7(n+4)=86-2n | | 14+x=400 | | 3(y-5)=8y-300 | | 18b=450 | | 7-5x=-4-8x | | 2x-21=12x-69 | | 2x2+7x-10=0 | | k+20=9k4 | | m2-20m+100=0 | | -1+2(x+5)=8x | | 3(x=6)=2(x-1) | | 12x8=12x-8 | | 7x+1=–4–x | | x4+3x2−10=0 | | 8^6-(64x39+4)/(93+8-9)=x | | n2+n-128=0 | | -14=x/9-11 | | -14=9x–11 | | .7-4y=-48 |